ISO/GOST/EN/DIN

SEMESTER UNITS

REFERENCE BOOKS

POLYTECH - AICTE - UNIVERSITY

INTERNSHIP SYLLABUS

WITEGRATED SOLUTION SOLUTION

MECHANISM

MACHINE ELEMENT

STRUCTURAL

III. DESIGN OF MACHINE ELEMENTS

- **♦ SYLLABUS PROGRAM**
- **◆ DESIGN OF MACHINE ELEMENTS**
- **◆ MECHANICAL ENGINEERING**
- ◆ SEMESTER VI (THIRD YEAR)
- ◆ ENGINEERING CODE PCC-ME 308

ACADEMIC SYLLABUS

INDUSTRY DB/APPLN

ROFESSIONAL COACH

DEGREE/DIPLOMA*

COURSE SEMESTER

- **◆** OBJECTIVE OF COURSE
- **◆ COURSE CONTENTS**
- **◆ COURSE OUTCOMES**
- **◆ REFERENCE BOOKS**

OBJECTIVE

THIS COURSE SEEKS TO PROVIDE AN INTRODUCTION TO THE DESIGN OF MACHINE ELEMENTS
COMMONLY ENCOUNTERED IN MECHANICAL ENGINEERING PRACTICE, THROUGH

1. A STRONG BACKGROUND IN MECHANICS OF MATERIALS BASED FAILURE CRITERIA
UNDERPINNING THE SAFETY-CRITICAL DESIGN OF MACHINE COMPONENTS

2. AN UNDERSTANDING OF THE ORIGINS. NATURE AND APPLICABILITY OF EMPIRICAL DESIGN

- PRINCIPLES, BASED ON SAFETY CONSIDERATIONS
 3. AN OVERVIEW OF CODES, STANDARDS AND DESIGN GUIDELINES FOR DIFFERENT ELEMENTS
- 4. AN APPRECIATION OF PARAMETER OPTIMIZATION AND DESIGN ITERATION
 5. AN APPRECIATION OF THE RELATIONSHIPS BETWEEN COMPONENT LEVEL DESIGN AND
 OVERALL MACHINE SYSTEM DESIGN AND PERFORMANCE

COURSE CONTENT

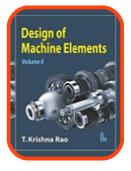
◆ DESIGN CONSIDERATIONS ◆ LIMITS, FITS AND STANDARDIZATION ◆ REVIEW OF FAILURE THEORIES FOR STATIC AND DYNAMIC LOADING (INCLUDING FATIGUE FAILURE) ◆ DESIGN OF SHAFTS UNDER STATIC AND FATIGUE LOADINGS ◆ ANALYSIS AND DESIGN OF SLIDING AND ROLLING CONTACT BEARINGS ◆ DESIGN OF TRANSMISSION ELEMENTS SPUR, HELICAL, BEVEL AND WORM GEARS; BELT AND CHAIN DRIVES ◆ DESIGN OF SPRINGS HELICAL COMPRESSION, TENSION, TORSIONAL AND LEAF SPRINGS ◆ DESIGN OF JOINTS: THREADED FASTENERS PRELOADED BOLTS AND WELDED JOINTS ◆ ANALYSIS AND APPLICATIONS OF POWER SCREWS AND COUPLINGS ◆ ANALYSIS OF CLUTCHES AND BRAKES

COURSE OUTCOMES

UPON COMPLETION OF THIS COURSE, STUDENTS
 WILL GET AN OVERVIEW OF THE DESIGN
 METHODOLOGIES EMPLOYED FOR THE DESIGN OF
 VARIOUS MACHINE COMPONENTS.

REFERENCE BOOKS

[1] SHIGLEY, J.E. AND MISCHKE, C.R., MECHANICAL ENGINEERING DESIGN, FIFTH EDITION, MCGRAW-HILL INTERNATIONAL; 1989.


[2] DEUTSCHMAN, D., MICHELS, W.J. AND WILSON, C.E., MACHINE DESIGN THEORY AND PRACTICE, MACMILLAN, 1992.

[3] JUVINAL, R.C., FUNDAMENTALS OF MACHINE COMPONENT DESIGN, JOHN WILEY, 1994.

[4] SPOTTES, M.F., DESIGN OF MACHINE ELEMENTS, PRENTICE-HALL INDIA, 1994. [5] R. L. NORTON, MECHANICAL DESIGN — AN INTEGRATED APPROACH, PRENTICE HALL, 1998

APM CAM/APM PLAIN
APM SCREW/APM STRUCTURE3D
APM DYNAMICS/APM BEAM
APM GRAPH/APM STUDIO
APM DRIVE/APM TRANS
APM SHAFT/APM BEAR
APM JOINT/APM SPRING

SAM
(SYNTHESIS ANALYSIS MECHANISM)
GENERAL - DESIGN WIZARDS MODELLING - INPUT MOTION CAD INTERFACE - ANALYSIS RESULTS - POST-PROCESSING
- OPTIMIZATION - TUTORIALS

SOFTWARE
APM WINMACHINE
SAM
SALTIRE
VARICAD
KOMPAS 3D

http://www.paviathjobportal.com/index

info@paviathintegratedsolution.com

http://www.paviathintegratedsolution.com/engineering-syllabus-mechanical http://www.paviathintegratedsolution.com/sam-features http://www.paviathintegratedsolution.com/mech-eng-saltire

ONLINE INTERNSHIP